新聞中心
這里有您想知道的互聯網營銷解決方案
ModelScope可視化微調的代碼有嗎?
ModelScope可視化微調的代碼主要包括以下幾個部分:

1、導入所需庫
2、加載預訓練模型
3、準備數據集
4、定義損失函數和優(yōu)化器
5、進行微調
6、評估模型性能
下面是詳細的代碼實現:
1. 導入所需庫
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from modelscope import VisualizationModel
2. 加載預訓練模型
model = VisualizationModel()
model.load_state_dict(torch.load('pretrained_model.pth'))
3. 準備數據集
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.ImageFolder(root='train_data', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
4. 定義損失函數和優(yōu)化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
5. 進行微調
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f'Epoch {epoch + 1}, Loss: {running_loss / (i + 1)}')
6. 評估模型性能
test_dataset = datasets.ImageFolder(root='test_data', transform=transform)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy: {100 * correct / total}%')
這段代碼首先導入了所需的庫,然后加載了預訓練模型,接著,準備了訓練和測試數據集,并定義了損失函數和優(yōu)化器,在微調過程中,進行了多個epoch的訓練,并在每個epoch后輸出了當前的損失值,評估了模型在測試集上的性能。
網站欄目:ModelScope可視化微調的代碼有嗎?
本文鏈接:http://m.fisionsoft.com.cn/article/dpssoec.html


咨詢
建站咨詢
