新聞中心
逐步回歸是一種統(tǒng)計(jì)方法,用于確定多個(gè)自變量與因變量之間的最佳關(guān)系,在Python中,我們可以使用statsmodels庫中的OLS(最小二乘法)模型來實(shí)現(xiàn)逐步回歸,以下是詳細(xì)的技術(shù)教學(xué):

1、確保已經(jīng)安裝了statsmodels庫,如果沒有安裝,可以使用以下命令進(jìn)行安裝:
pip install statsmodels
2、導(dǎo)入所需的庫和模塊:
import numpy as np import pandas as pd import statsmodels.api as sm from statsmodels.formula.api import ols
3、準(zhǔn)備數(shù)據(jù),這里我們使用一個(gè)示例數(shù)據(jù)集,包含兩個(gè)自變量(X1和X2)和一個(gè)因變量(Y):
創(chuàng)建示例數(shù)據(jù)集
data = {'X1': [1, 2, 3, 4, 5],
'X2': [2, 3, 4, 5, 6],
'Y': [3, 5, 7, 9, 11]}
df = pd.DataFrame(data)
4、初始化逐步回歸模型,在這個(gè)例子中,我們將使用ols函數(shù)來創(chuàng)建一個(gè)線性回歸模型,并指定因變量(Y)和自變量(X1和X2):
創(chuàng)建線性回歸模型
model = ols('Y ~ C(X1)+C(X2)', data=df).fit()
5、添加自變量,在這個(gè)例子中,我們將逐個(gè)添加自變量,然后檢查它們是否對(duì)因變量有顯著影響,我們添加X1:
添加X1作為自變量 model_x1 = model.add_constant(cov_type='clustered') model_x1 = model_x1.fit() print(model_x1.summary())
6、根據(jù)上一步的結(jié)果,如果X1對(duì)因變量有顯著影響,我們可以繼續(xù)添加下一個(gè)自變量,在這個(gè)例子中,我們將添加X2:
添加X2作為自變量 model_x2 = model_x1.add_constant(cov_type='clustered') + 'X2' model_x2 = model_x2.fit() print(model_x2.summary())
7、根據(jù)上一步的結(jié)果,如果X2對(duì)因變量有顯著影響,我們可以繼續(xù)添加下一個(gè)自變量,在這個(gè)例子中,我們已經(jīng)添加了所有自變量,我們可以查看最終的模型摘要:
查看最終模型摘要 final_model = model_x2.add_constant(cov_type='clustered') + ['X1', 'X2'] print(final_model.summary())
8、根據(jù)模型摘要,我們可以得出逐步回歸結(jié)果,在這個(gè)例子中,我們得到了一個(gè)包含X1和X2的線性回歸模型:
獲取最終模型的系數(shù)和截距 params = final_model.params[:1] * np.array([df['X1'].mean(), df['X2'].mean()]) + final_model.params[1] * np.array([df['X1'].mean(), df['X2'].mean()]) + final_model.bse[1] * np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df)) + final_model.tvalues[1] * np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df)) * np.array([df['X1'].mean(), df['X2'].mean()]) / (np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df))) * np.array([df['X1'].mean(), df['X2'].mean()]) / (np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df))) * np.array([df['X1'].mean(), df['X2'].mean()]) / (np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df))) * np.array([df['X1'].mean(), df['X2'].mean()]) / (np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df))) * np.array([df['X1'].mean(), df['X2'].mean()]) / (np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df))) * np.array([df['X1'].mean(), df['X2'].mean()]) / (np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df))) * np.array([df['X1'].mean(), df['X2'].mean()]) / (np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df))) * np.array([df['X1'].mean(), df['X2'].mean()]) / (np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df))) * np.array([df['X1'].mean(), df['X2'].mean()]) / (np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df))) * np.array([df['X1'].mean(), df['X2'].mean()]) / (np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df))) * np.array([df['X1'].mean(), df['X2'].mean()]) / (np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df))) * np.array([df['X1'].mean(), df['X2'].mean()]) / (np.array([df['X1'].std(), df['X2'].std()]) / np.sqrt(len(df))) * np.array([df['X1'].mean(), df['Y'].mean()]) params[0] * np.array([df['Y'].min(), df['Y'].min()]) params[1] * np.array([df['Y'].min(), df['Y'].min()]) final_model.bse[1] * np.array([df['Y'].min(), df['Y'].min()]) + final_model.tvalues[1] * np.array([df['Y'].min(), df['Y'].min()]) * np.sqrt((np.square(np.array([df['Y'].max(), df['Y'].max()])) (np.square(np.array([df['Y'].min(), df['Y'].min()])) + (np.square(np.array([df['Y'].max(), df['Y'].max()])) (np.square(np.array([df['Y'].min(), df ['Y].min()])) + (np.square(np.array([df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], df ['Y'], f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'y', f 'f y']))))))))) params[0] * np.square(np
當(dāng)前文章:用python如何做逐步回歸
文章源于:http://m.fisionsoft.com.cn/article/djohcjo.html


咨詢
建站咨詢
