新聞中心
1、殘差連接是目前常用的組件,解決了大規(guī)模深度學(xué)習(xí)模型梯度消失和瓶頸問(wèn)題。

站在用戶的角度思考問(wèn)題,與客戶深入溝通,找到大祥網(wǎng)站設(shè)計(jì)與大祥網(wǎng)站推廣的解決方案,憑借多年的經(jīng)驗(yàn),讓設(shè)計(jì)與互聯(lián)網(wǎng)技術(shù)結(jié)合,創(chuàng)造個(gè)性化、用戶體驗(yàn)好的作品,建站類(lèi)型包括:網(wǎng)站設(shè)計(jì)制作、成都網(wǎng)站制作、企業(yè)官網(wǎng)、英文網(wǎng)站、手機(jī)端網(wǎng)站、網(wǎng)站推廣、主機(jī)域名、網(wǎng)站空間、企業(yè)郵箱。業(yè)務(wù)覆蓋大祥地區(qū)。
通常,在10層以上的模型中追加殘差連接可能有幫助。
from keras import layers x = ... y = layers.Conv2D(128, 3, activation='relu', padding='same')(x) y = layers.Conv2D(128, 3, activation='relu', padding='same')(y) y = layers.MaxPooling2D(2, strides=2)(y) # 形狀不同,要做線性變換: residual = layers.Conv2D(128, 1, strides=2, padding='same')(x) # 使用 1×1 卷積,將 x 線性下采樣為與 y 具有相同的形狀 y = layers.add([y, residual])
2、標(biāo)準(zhǔn)化用于使模型看到的不同樣本更相似,有助于模型的優(yōu)化和泛化。
# Conv conv_model.add(layers.Conv2D(32, 3, activation='relu')) conv_model.add(layers.BatchNormalization()) # Dense dense_model.add(layers.Dense(32, activation='relu')) dense_model.add(layers.BatchNormalization()) 3、深度可分離卷積層,在Keras中被稱為SeparableConv2D,其功能與普通Conv2D相同。 但是SeparableConv2D比Conv2D輕,訓(xùn)練快,精度高。 from tensorflow.keras.models import Sequential, Model from tensorflow.keras import layers height = 64 width = 64 channels = 3 num_classes = 10 model = Sequential() model.add(layers.SeparableConv2D(32, 3, activation='relu', input_shape=(height, width, channels,))) model.add(layers.SeparableConv2D(64, 3, activation='relu')) model.add(layers.MaxPooling2D(2)) model.add(layers.SeparableConv2D(64, 3, activation='relu')) model.add(layers.SeparableConv2D(128, 3, activation='relu')) model.add(layers.MaxPooling2D(2)) model.add(layers.SeparableConv2D(64, 3, activation='relu')) model.add(layers.SeparableConv2D(128, 3, activation='relu')) model.add(layers.GlobalAveragePooling2D()) model.add(layers.Dense(32, activation='relu')) model.add(layers.Dense(num_classes, activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
以上就是Python高級(jí)架構(gòu)模式的整理,希望對(duì)大家有所幫助。更多Python學(xué)習(xí)指路:創(chuàng)新互聯(lián)Python教程
本文教程操作環(huán)境:windows7系統(tǒng)、Python 3.9.1,DELL G3電腦。
分享題目:創(chuàng)新互聯(lián)Python教程:Python高級(jí)架構(gòu)模式的整理
鏈接URL:http://m.fisionsoft.com.cn/article/djhogdh.html


咨詢
建站咨詢
