新聞中心
這里有您想知道的互聯(lián)網營銷解決方案
Flink SQL 知其所以然:Over 聚合操作
架構

大家好,我是老羊,今天我們來學習 Flink SQL 中的· Over 聚合操作。
- Over 聚合定義(支持 Batch\Streaming):可以理解為是一種特殊的滑動窗口聚合函數(shù)。
那這里我們拿 Over 聚合? 與 窗口聚合 做一個對比,其之間的最大不同之處在于:
窗口聚合:不在 group by 中的字段,不能直接在 select 中拿到
Over 聚合:能夠保留原始字段
注意:其實在生產環(huán)境中,Over 聚合的使用場景還是比較少的。在 Hive 中也有相同的聚合,但是小伙伴萌可以想想你在離線數(shù)倉經常使用嘛?
- 應用場景:計算最近一段滑動窗口的聚合結果數(shù)據。
- 際案例:查詢每個產品最近一小時訂單的金額總和:
SELECT order_id, order_time, amount,
SUM(amount) OVER (
PARTITION BY product
ORDER BY order_time
RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW
) AS one_hour_prod_amount_sum
FROM Orders
Over 聚合的語法總結如下:
SELECT
agg_func(agg_col) OVER (
[PARTITION BY col1[, col2, ...]]
ORDER BY time_col
range_definition),
...
FROM ...
其中:
- ORDER BY:必須是時間戳列(事件時間、處理時間)
- PARTITION BY:標識了聚合窗口的聚合粒度,如上述案例是按照 product 進行聚合
- range_definition:這個標識聚合窗口的聚合數(shù)據范圍,在 Flink 中有兩種指定數(shù)據范圍的方式。第一種為按照行數(shù)聚合?,第二種為按照時間區(qū)間聚合。如下案例所示:
a. 時間區(qū)間聚合:
按照時間區(qū)間聚合就是時間區(qū)間的一個滑動窗口,比如下面案例 1 小時的區(qū)間,最新輸出的一條數(shù)據的 sum 聚合結果就是最近一小時數(shù)據的 amount 之和。
CREATE TABLE source_table (
order_id BIGINT,
product BIGINT,
amount BIGINT,
order_time as cast(CURRENT_TIMESTAMP as TIMESTAMP(3)),
WATERMARK FOR order_time AS order_time - INTERVAL '0.001' SECOND
) WITH (
'connector' = 'datagen',
'rows-per-second' = '1',
'fields.order_id.min' = '1',
'fields.order_id.max' = '2',
'fields.amount.min' = '1',
'fields.amount.max' = '10',
'fields.product.min' = '1',
'fields.product.max' = '2'
);
CREATE TABLE sink_table (
product BIGINT,
order_time TIMESTAMP(3),
amount BIGINT,
one_hour_prod_amount_sum BIGINT
) WITH (
'connector' = 'print'
);
INSERT INTO sink_table
SELECT product, order_time, amount,
SUM(amount) OVER (
PARTITION BY product
ORDER BY order_time
-- 標識統(tǒng)計范圍是一個 product 的最近 1 小時的數(shù)據
RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW
) AS one_hour_prod_amount_sum
FROM source_table
結果如下:
+I[2, 2021-12-24T22:08:26.583, 7, 73]
+I[2, 2021-12-24T22:08:27.583, 7, 80]
+I[2, 2021-12-24T22:08:28.583, 4, 84]
+I[2, 2021-12-24T22:08:29.584, 7, 91]
+I[2, 2021-12-24T22:08:30.583, 8, 99]
+I[1, 2021-12-24T22:08:31.583, 9, 138]
+I[2, 2021-12-24T22:08:32.584, 6, 105]
+I[1, 2021-12-24T22:08:33.584, 7, 145]
b. 行數(shù)聚合:
按照行數(shù)聚合就是數(shù)據行數(shù)的一個滑動窗口,比如下面案例,最新輸出的一條數(shù)據的 sum 聚合結果就是最近 5 行數(shù)據的 amount 之和。
CREATE TABLE source_table (
order_id BIGINT,
product BIGINT,
amount BIGINT,
order_time as cast(CURRENT_TIMESTAMP as TIMESTAMP(3)),
WATERMARK FOR order_time AS order_time - INTERVAL '0.001' SECOND
) WITH (
'connector' = 'datagen',
'rows-per-second' = '1',
'fields.order_id.min' = '1',
'fields.order_id.max' = '2',
'fields.amount.min' = '1',
'fields.amount.max' = '2',
'fields.product.min' = '1',
'fields.product.max' = '2'
);
CREATE TABLE sink_table (
product BIGINT,
order_time TIMESTAMP(3),
amount BIGINT,
one_hour_prod_amount_sum BIGINT
) WITH (
'connector' = 'print'
);
INSERT INTO sink_table
SELECT product, order_time, amount,
SUM(amount) OVER (
PARTITION BY product
ORDER BY order_time
-- 標識統(tǒng)計范圍是一個 product 的最近 5 行數(shù)據
ROWS BETWEEN 5 PRECEDING AND CURRENT ROW
) AS one_hour_prod_amount_sum
FROM source_table
預跑結果如下:
+I[2, 2021-12-24T22:18:19.147, 1, 9]
+I[1, 2021-12-24T22:18:20.147, 2, 11]
+I[1, 2021-12-24T22:18:21.147, 2, 12]
+I[1, 2021-12-24T22:18:22.147, 2, 12]
+I[1, 2021-12-24T22:18:23.148, 2, 12]
+I[1, 2021-12-24T22:18:24.147, 1, 11]
+I[1, 2021-12-24T22:18:25.146, 1, 10]
+I[1, 2021-12-24T22:18:26.147, 1, 9]
+I[2, 2021-12-24T22:18:27.145, 2, 11]
+I[2, 2021-12-24T22:18:28.148, 1, 10]
+I[2, 2021-12-24T22:18:29.145, 2, 10]
當然,如果你在一個 SELECT 中有多個聚合窗口的聚合方式,F(xiàn)link SQL 支持了一種簡化寫法,如下案例:
SELECT order_id, order_time, amount,
SUM(amount) OVER w AS sum_amount,
AVG(amount) OVER w AS avg_amount
FROM Orders
-- 使用下面子句,定義 Over Window
WINDOW w AS (
PARTITION BY product
ORDER BY order_time
RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW)
本文標題:Flink SQL 知其所以然:Over 聚合操作
瀏覽地址:http://m.fisionsoft.com.cn/article/ccoioog.html


咨詢
建站咨詢
